International Journal on Applications in Information and Communication Engineering

Volume 1: Issue 9: September 2015, pp 56-60. www.aetsjournal.com

ISSN (Online) : 2394-6237

Unique Identity Based Provable Data Control in
Multi Cloud Environment

J.Emily Helda , D.Jebasudha

Abstract— Remote data integrity checking is of crucial
importance in cloud storage. It can make the clients verify whether
their outsourced data is kept intact without downloading the whole
data. In some application scenarios, the clients have to store their data
on multi-cloud servers. At the same time, the integrity checking
protocol must be efficient in order to save the verifier’s cost. From
the two points, we propose a novel remote data integrity checking
model: ID-DPDP (Identity-Based Distributed Provable Data
Possession) in multi-cloud storage. The formal system model and
security model are given. Based on the bilinear pairings, a concrete
ID-DPDP protocol is designed. The proposed ID-DPDP protocol is
provably secure under the hardness assumption of the standard CDH
(computational Diffie-Hellman) problem. In addition to the structural
advantage of Elimination of certificate management, our ID-DPDP
protocol is also efficient and flexible. Based on the client’s
authorization, the proposed ID-DPDP protocol can realize private
verification, delegated verification and public verification.

Index Terms— Cloud storage, Remote data integrity, Multi-
cloud servers, Identity-based distributed provable data possession
(ID-DPDP).

I. INTRODUCTION

dvances in networking and computing technologies have
prompted many organizations to outsource their storage
needs on demand. This new economic and computing
paradigm is commonly referred to as cloud storage. It brings
appealing benefits including relief of the burden for storage
management, universal data access with independent
geographical locations, and avoidance of capital expenditure
on hardware, software, and personnel maintenances, etc.
However, there are barriers that hinder migration to the cloud.
One of the main barriers is that, due to lack of physical
control over the outsourced data, a cloud user may worry
about whether her data are kept as expected. If the cloud user
is a company, apart from the risk of remote malicious attacks
on the cloud, the traditional concerns posed by malicious
company insiders are now supplemented by the even more
hazardous threat of malicious outsiders who are given the
power of insiders. A recent EU bill forces companies
migrating to the cloud to be liable for any data corruption or
privacy breach into which their cloud service provider (CSP)
may incur, even when they do not retain control over their

J.Emily Helda, PG Scholar, Department of Computer Science and
Engineering, Mount Zion College of Engineering & Technology Pudukottai

D.Jebasudha , Assistant Professor, Department of Computer Science and
Engineering, Mount Zion College of Engineering & Technology Pudukottai

56

data. Convincing cloud users that their data are intact is
especially vital when users are companies. Remote data
possession checking (RDPC) is a primitive designed to
address this issue.

A. Remote Data Possession Checking

RDPC allows a client that has stored data at a public cloud
server (PCS) to verify that the server possesses the original
data without retrieving it. The model generates probabilistic
proofs of possession by sampling random sets of blocks from
the server, which drastically reduces I/O costs. The client
maintains a constant amount of metadata to verify the proof.
The challenge/response protocol transmits a small, constant
amount of data, which minimizes network communication. In
order to achieve secure RDPC implementations, Ateniese et
al. proposed a provable data possession (PDP) paradigm and
designed two provably-secure PDP3 schemes based on the
difficulty of large integer factoring. They refined the original
paradigm and proposed a dynamic PDP scheme in but their
proposal does not support the insert operation. In order to
solve this problem, Erway et al. proposed a full-dynamic PDP
scheme by employing an authenticated flip table. Following
Ateniese et al.’s pioneering work, researchers devoted great
efforts to RDPC with extended models and new protocols.
One of the variations is the proof of retrievability (POR), in
which a data storage server cannot only prove to a verifier that
he is actually storing all of a client’s data, but also it can prove
that the users can retrieve them at any time. This is stronger
than the regular PDP notion. Shacham presented the first POR
schemes with provable security. The state of the art can be
found in but few POR protocols are more efficient than their
PDP counterparts. The challenge is to build POR systems that
are both efficient and provably secure. Note that one of
benefits of cloud storage is to enable universal data access
with independent geographical locations. This implies that the
end devices may be mobile and limited in computation and
storage. Regular RDPC protocols are more suitable for cloud
users equipped with mobile end devices. Our ID-RDPC
architecture and protocol are based on the PDP model.

B. Motivation and Contribution

This approach focuses on RDPC in company-oriented cloud
storage. Consider a scenario in which a company purchases
the cloud storage service. Only the staff members of the
company are allowed to upload data to the PCS and may
check the integrity of their data with mobile devices. PCS has
to be convinced that the data (and their tags) to be uploaded
come from the staff of the company, although this step is

International Journal on Applications in Information and Communication Engineering

Volume 1: Issue 9: September 2015, pp 56-60. www.aetsjournal.com

ISSN (Online) : 2394-6237

usually omitted in the existing models. The metadata or the
tags are indeed signatures of the original data. Note that the
existing RDPC protocols are designed in the PKI setting. PCS
needs to validate the tags and the appended public key
certificate of the users. The validation of the legit uploads
incurs considerable overheads since the staff may 4 frequently
upload data to PCS. This burden can only be partially
mitigated by letting PCS cache the verified certificates.
Indeed, caching cannot be used for certificates revoked before
their expiration, for employees who leave the company, for
newly recruited employees, etc. In addition to the heavy
certificate verification, the system suffers from complicated
certificate management: certificates generation, delivery,
revocation, renewal, etc. In order to solve the above problem,
we investigate a new RDPC model incorporating identity
based cryptography, i.e., the ID-RDPC model. Our
contribution is twofold:

e First, we formalize the ID-RDPC model. In this model, a
trusted private key generator (PKG) generates the system
public key and the master secret key. The PKG also generates
private keys for the clients, i.e., the staff members of the
company, by taking as input the staff members’ identities and
the PKG’s master secret key. With a private key, the client can
generate the tags of the data to be uploaded. Upon receiving a
request of a data possession proof, the PCS can generate the
proof without verifying any certificate but simply checking
that the corresponding system public key is from a company
allowed to use the service. Finally, the client can verify
whether the PCS-generated proof is valid.

e Second, we realize the first ID-RDPC protocol. The main
challenge to design the ID-RDPC protocol is that it requires
the client to generate aggregately ID-based signatures like tags
without applying the hash-and-sign paradigm to the original
data. We address this with a variation of the well-known
Schnorr signature. The instantiated ID-RDPC protocol is
shown to be secure by assuming the hardness of the
Computational Diffie-Hellman problem. In addition to the
structural advantage of eliminating certificate management
and verification, our ID-RDPC protocol is more efficient than
the existing RDPC protocols in the PKI setting in terms of
computation and communication.

Choud Server

- .,
./""—H-\:‘:x—":-k_
5 o] h
-
=
T
oof of data possession

S

MMaster pubiic key

\\‘\..
Client's ID

-
Vi a2
Ly

-

Private key for client |

. Fig 1: The System Model of ID-RPDC

C.Modeling of ID-RPDC

The ID-RDPC system model and its security definition are
given in this section. An ID-RDPC protocol comprises three

57

different entities, as illustrated in Fig.1.2. They can be
identified as follows:

A) PKG (Private Key Generator): Entity, trusted by the
clients and the PCSs, that generates the public parameters
Params, the master public key mpk, the master secret key msk
and the private key of the Client defined below.

B) Client: Entity which has massive data to be stored on
the public cloud for maintenance and computation. Clients
can be either individual consumers or group consumers, €.g.,
the departments of the company in the motivated scenario.

C) Cloud Server: Entity, managed by the cloud service
provider that has significant storage space and computational
resources to maintain the clients’ data.

In the cloud paradigm, by putting the large data files on the
remote cloud servers, the clients can be relieved of the burden
of storage and computation. As the clients no longer possess
their data locally, it is of critical importance for them to
ensure that their data are being correctly stored and
maintained. That is, clients should be equipped with certain
security means so that they can periodically verify the
correctness of the remote data even without the existence of
local copies.

II. RELATED WIRK

We introduce a model for provable data possession (PDP)
that allows a client that has stored data at an untrusted server
to verify that the server possesses the original data without
retrieving it. The model generates probabilistic proofs of
possession by sampling random sets of blocks from the server,
which drastically reduces I/O costs. The client maintains a
constant amount of metadata to verify the proof [1]. The
challenge/response protocol transmits a small, constant
amount of data, which minimizes network communication.
Thus, the PDP model for remote data checking supports large
data sets in widely-distributed storage systems.

We present two provably-secure PDP schemes that are
more efficient than previous solutions, even when compared
with schemes that achieve weaker guarantees. In particular,
the overhead at the server is low (or even constant), as
opposed to linear in the size of the data. Experiments using
our implementation verify the practicality of PDP and reveal
that the performance of PDP is bounded by disk I/O and not
by cryptographic computation.

The scalable and efficient provable data possession
(SEPDP) library allows a client that has stored data at an
untrusted server to verify that the server possesses the original
data without retrieving it or storing a copy himself. The
scheme using symmetric key constructs, making it a
computationally efficient [2].

As storage-outsourcing services and resource-sharing
networks have become popular, the problem of efficiently
proving the integrity of data stored at untrusted servers has
received increased attention. In the provable data possession
(PDP) model, the client preprocesses the data and then sends it
to an untrusted server for storage, while keeping a small
amount of meta-data [3]. The client later asks the server to

International Journal on Applications in Information and Communication Engineering

Volume 1: Issue 9: September 2015, pp 56-60. www.aetsjournal.com

ISSN (Online) : 2394-6237

prove that the stored data has not been tampered with or
deleted (without downloading the actual data). However, the
original PDP scheme applies only to static (or append-only)
files. We present a definitional framework and efficient
constructions for dynamic provable data possession (DPDP),
which extends the PDP model to support provable updates to
stored data. We use a new version of authenticated
dictionaries based on rank information. The price of dynamic
updates is a performance change from O (1) to O (log n) (or O
(n ¢ log n)), for a file consisting of n blocks, while
maintaining the same (or better, respectively) probability of
misbehavior detection. Our experiments show that this
slowdown is very low in practice (e.g., 415KB proof size and
30ms computational overhead for a 1GB file). We also show
how to apply our DPDP scheme to outsourced file systems
and version control systems (e.g., CVS).

Checking data possession in networked information systems
such as those related to critical infrastructures (power
facilities, airports, data vaults, defense systems, etc.) is a
matter of crucial importance [4]. Remote data possession
checking protocols permit to check that a remote server can
access an uncorrupted file in such a way that the verifier does
not need to know beforehand the entire file that is being
verified. Unfortunately, current protocols only allow a limited
number of successive verifications or are impractical from the
computational point of view. In this paper, we present a new
remote data possession checking protocol such that: 1) it
allows an unlimited number of file integrity verifications; 2)
its maximum running time can be chosen at set-up time and
traded off against storage at the verifier.

Provable data possession (PDP) is a technique for ensuring
the integrity of data in outsourcing storage service. In this
project, we address the construction of efficient PDP schemes
on hybrid clouds to support scalability of service and data
migration, in which we consider the existence of multiple
cloud service providers (CSP) to cooperatively store and
maintain the clients’ data. The proposed PDP schemes include
an interactive PDP (IPDP) and cooperative PDP (CPDP)
schemes adopting zero-knowledge property and three-layered
index hierarchy, respectively. In particular, we present an
efficient method for selecting the optimal number of sectors in
each block to minimize the computation costs of clients and
storage service providers [5]. Our experiments show that the
verification requires a small, constant amount of overhead,
which minimizes communication complexity.

III. PROPOSED SCHEME

First, we analyze the performance of our proposed ID-
DPDP protocol from the computation and communication
overhead. We compare our ID-DPDP protocol with the other
up-to date PDP protocols. Second, we analyze our proposed
ID-DPDP protocol’s properties of flexibility and verification.
Third, we give the prototypal implementation of the proposed
ID-DPDP protocol.

The signature relates the client’s identity with his private
key. Distributed computing is used to store the client’s data on

58

multi-cloud servers. At the same time, distributed computing
is also used to combine the multi-cloud servers’ responses to
respond the verifier’s challenge.

Advantages

e In our proposed system each client has a private
correspond to his identity (i.e.) name, id or any...

e The public verifier allow the user to correspond to his
identity (i.e.) private Key

A. Heterogeneity and Tight Coupling

Clouds implement proprietary interfaces for service access,
configuration, and management as well as for interaction with
other cloud components. Each service layer of a cloud tightly
integrates with lower service layers or is highly dependent on
the value-added proprietary solutions that the cloud offers.
This heterogeneity and tight coupling prohibit interoperation
between services from different clouds. The current business
model requires preestablished agreements between CSPs
before collaboration can occur. These agreements are
necessary for clouds to establish their willingness to
collaborate and establish trust with one another. The lack of
such agreements prohibits multicloud collaborative efforts due
to incompatible intentions, business rules, and policies.
Moreover, collaborations resulting from preestablished
agreements typically exhibit tight integration between the
participants and cannot be extended to provide universal and
dynamic collaboration.

B. Key Generation Algorithm (KeyGen)

Key Generation algorithm that is run by the user to setup
the scheme. Generating keys (Based on Hint Words) and mail
it to users for decrypting the encrypted data. Key generation is
the process of generating keys for cryptography. A key is used
to encrypt and decrypt whatever data is being encrypted or
decrypted. Modern cryptographic systems include symmetric-
key algorithms (such as DES and AES) and public-key
algorithms (such as RSA). Symmetric-key algorithms use a
single shared key; keeping data secret requires keeping this
key secret. Public-key algorithms use a public key and a
private key. The public key is made available to anyone (often
by means of a digital certificate). A sender encrypts data with
the public key; only the holder of the private key can decrypt
this data. Since public-key algorithms tend to be much slower
than symmetric-key algorithms, modern systems such as TLS
and SSH use a combination of the two: one party receives the
other's public key, and encrypts a small piece of data (either a
symmetric key or some data used to generate it). The
remainder of the conversation uses a (typically faster)
symmetric-key algorithm for encryption. = Computer
cryptography uses integers for keys. In some cases keys are
randomly generated using a random number generator (RNG)
or pseudorandom number generator (PRNG). A PRNG is a
computer algorithm that produces data that appears random
under analysis. PRNGs that use system entropy to seed data
generally produce better results, since this makes the initial
conditions of the PRNG much more difficult for an attacker to
guess. In other situations, the key is created using a passphrase

International Journal on Applications in Information and Communication Engineering

Volume 1: Issue 9: September 2015, pp 56-60. www.aetsjournal.com

ISSN (Online) : 2394-6237

and a key generation algorithm, usually involving a
cryptographic hash function such as SHA-1. The simplest
method to read encrypted data is a brute force attack—simply
attempting every number, up to the maximum length of the
key. Therefore, it is important to use a sufficiently long key
length; longer keys take exponentially longer to attack,
rendering a brute force attack impractical. Currently, key
lengths of 128 bits (for symmetric key algorithms) and 1024
bits (for public-key algorithms) are common.

C. Signature Generation Algorithm (SigGen)

Used by the user to generate verification metadata, which
may consist of unique signatures or other information used for
verifying the user? Signature Generation Algorithm is used by
the user to generate verification metadata, which may consist
of machine access code. This algorithm checks the signatures,
or other related information that will be used for auditing. It
generates the signature for the user and set the identity to each
and every individual in the cloud architecture.

IV. SYSTEM DESIGN

A. System Architecture

Select the Data 1o
Upload

Data User

Server
Admin

Search for the Data
Owner's Uploaded File

—
Receive the Content in
Encrypted Form

View the Filz Content Schema]

Verify the Content and
Size of the Uploaded

g

Split the Content of the File

into 3 Parts Sent the Security Coda
t to Data User's Mal

Check for the Server
Space and Availability

Request for a Server

Search for
anather Data

Enter the Key
andget the Data

Response Sent
to Data Owner

File Downloaded with
Proper Content

Fig 2: System Architecture

The major part of the project development sector considers
and fully survey all the required needs for developing the
project. Once these things are satisfied and fully surveyed,
then the next step is to determine about the software

specifications in the respective system such as what type of
operating system the project would require, and what are all
the necessary software are needed to proceed with the next
step such as developing the tools, and the associated
operations. Generally algorithms shows a result for exploring
a single thing that is either be a performance, or speed, or
accuracy, and so on. An architecture description is a formal
description and representation of a system, organized in a way
that supports reasoning about the structures and behaviors of
the system.

Clouds implement proprietary interfaces for service access,
configuration, and management as well as for interaction with
other cloud components. Each service layer of a cloud tightly
integrates with lower service layers or is highly dependent on
the value-added proprietary solutions that the cloud offers.
This heterogeneity and tight coupling prohibit interoperation
between services from different clouds. The current business
model requires pre-established agreements between CSPs
before collaboration can occur. These agreements are
necessary for clouds to establish their willingness to
collaborate and establish trust with one another. The lack of
such agreements prohibits multi-cloud collaborative efforts
due to incompatible intentions, business rules, and policies.
Moreover, collaborations resulting from pre-established
agreements typically exhibit tight integration between the
participants and cannot be extended to provide universal and
dynamic collaboration.

V.METHODOLOGY

Following are the most frequently used project management
Methodologies in the project management practice:

A Secure Key Processing

B. Verification Generator

C. Server Data Processing

D Data Assurance to Admin Process

E Admin Auditing Model

A.

Secure Key Processing

The Secure Key Processing module adds the facility to
the site to create the random set of keys to verify the user
identity as well as the data identity by means of a Key
Generation algorithm that is run by the user to setup the
scheme. Generating keys (Based on Hint Words) and mail it to
users for decrypting the encrypted data. Key generation is the
process of generating keys for cryptography. A key is used to
encrypt and decrypt whatever data is being encrypted or
decrypted. Modern cryptographic systems include symmetric-
key algorithms (such as DES and AES) and public-key
algorithms (such as RSA). Symmetric-key algorithms use a
single shared key; keeping data secret requires keeping this
key secret. Public-key algorithms use a public key and a
private key. The public key is made available to anyone (often
by means of a digital certificate). A sender encrypts data with
the public key; only the holder of the private key can decrypt
this data. Since public-key algorithms tend to be much slower
than symmetric-key algorithms, modern systems such as TLS

International Journal on Applications in Information and Communication Engineering

Volume 1: Issue 9: September 2015, pp 56-60. www.aetsjournal.com

ISSN (Online) : 2394-6237

and SSH use a combination of the two: one party receives the
other's public key, and encrypts a small piece of data (either a
symmetric key or some data used to generate it). The
remainder of the conversation uses a (typically faster)
symmetric-key algorithm for encryption. = Computer
cryptography uses integers for keys. In some cases keys are
randomly generated using a random number generator (RNG)
or pseudorandom number generator (PRNG). A PRNG is a
computer algorithm that produces data that appears random
under analysis. PRNGs that use system entropy to seed data
generally produce better results, since this makes the initial
conditions of the PRNG much more difficult for an attacker to
guess.

A. Verification Generator

The verification generator module allows the system to
generate the verification code / signature for the users to
securely handle the data in a remote medium. It is used by the
user to generate verification metadata, which may consist of
unique signatures or other information used for verifying the
user? Signature Generation Algorithm is used by the user to
generate verification metadata, which may consist of machine
access code. This algorithm checks the signatures, or other
related information that will be used for auditing. It generates
the signature for the user and set the identity to each and every
individual in the cloud architecture.

B. Server Data Processing

The server data processing module fully describes about
the cloud implementation process. Clouds implement
proprietary interfaces for service access, configuration, and
management as well as for interaction with other cloud
components. Each service layer of a cloud tightly integrates
with lower service layers or is highly dependent on the value-
added proprietary solutions that the cloud offers. This
heterogeneity and tight coupling prohibit interoperation
between services from different clouds. The current business
model requires pre-established agreements between CSPs
before collaboration can occur. These agreements are
necessary for clouds to establish their willingness to
collaborate and establish trust with one another. The lack of
such agreements prohibits multi-cloud collaborative efforts
due to incompatible intentions, business rules, and policies.
Moreover, collaborations resulting from pre-established
agreements typically exhibit tight integration between the
participants and cannot be extended to provide universal and
dynamic collaboration..

C. Data Assurance to Admin Process

The data assurance module provides the facility to the
administrator to check the resource owner want to upload into
the server is valid or not. If the owner requesting for the
proper resource to upload it will be verified by the
administrator and get the permission properly and get splitted
into three parts and stored into various servers for providing
the security means, but if the requesting resource upload
permission is for the wrong resource then it will be blocked by

60

the administrator immediately and the owner cannot be upload
the resource further

D.Admin Auditing Model

The administrator auditing panel allows the
administrator to audit the resource which is uploaded by the
resource owners, in which the process is also known as public
verifier process. The public verifier is able to correctly check
the integrity of shared data. The public verifier can audit the
integrity of shared data from multi-cloud with whole data and
accept the file. The public auditor checks all files integrity and
accept the files to cloud server for further process like
searching and maintenance.

II. CONCLUSION

Favorable solutions to ensure data privacy must employ
flexible data perturbation methods that provide control over
the tradeoff between the privacy guarantee and the utility of
the query results. Prevent dynamic data integrity among
applications hosted by different cloud systems. Proxy services
are implemented to maintain the authentication and initially
provide support for simple use cases, later progressing to more
complex use cases.

REFERENCES

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
D. Song. Provable Data Possession at Untrusted Stores. CCS’07, pp.
598-609, 2007.

G. Ateniese, R. DiPietro, L. V. Mancini, G. Tsudik. Scalable and
Efficient Provable Data Possession. Secure Comm. 2008, article 9, 2008.
C. C. Erway, A. Kupcu, C. Papamanthou, R. Tamassia. Dynamic
Provable Data Possession. CCS’09, 213-222, 2009.

F. Seb’e, J. Domingo-Ferrer, A. Martinez-Ballest’e, Y. Deswarte, J.
Quisquater. Efficient Remote Data Integrity checking in Critical
Information Infrastructures. IEEE Transactions on Knowledge and Data
Engineering, 20(8):1034-1038, 2008.

Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H. Hu, S. S. Yau. Efficient Provable
Data Possession for Hybrid Clouds. CCS’10, 756-758, 2010.

Y. Zhu, H. Hu, G.J. Ahn, M. Yu. Cooperative Provable Data Possession
for Integrity Verification in Multi-Cloud Storage. IEEE Transactions on
Parallel and Distributed Systems, 23(12):2231-224, 2012.

R. Curtmola, O. Khan, R. Burmns, G. Ateniese. MR-PDP: Multiple-
Replica Provable Data Possession. ICDCS’08, 411-420, 2008.

