Volume 1: Issue 4: April 2015, pp 1-3. www.aetsjournal.com ISSN (Online) : 2455-0523 -

Classification and Variants of Automata – A Review

Dr.P.Ezhilarasu, Prof.D.Satheesh Kumar, Prof.J.Prakash

Abstract— This paper on Automata focuses on studying the classification and the variants of Automata. More than 25 variants/classification analyzed. The description for the each type automata also given. The variants/classification maximum based on the finite automata, and the fuzzy concept.

Keywords— Automata, Classification, Variants, Description.

I. INTRODUCTION

The automata defined as the robots or machine that works by its own power. It doesn't need external force for doing its task [1]. There is a need for reducing the manual work in many places. Hence we need automata to complete the task without human intervention.

S. N O	AUTOMATA	DESCRIPTION
	CLASSIFICATION/VA RIANTS	
	BASED ON	
1	Finite Automata [FA]	The Finite Automata [FA] is the simple abstract machine that gets an input. Then it recognizes the pattern based on the construction [2].
	Variants	
	Automata & Transition	
2	Deterministic Finite Automata	The Finite State Machine (FSM), which accepts or rejects the input string through the completion of transition [3]. McCulloch and Pitts [1943] introduced the concepts similar to the Finite Automata [4].
	Variants	
	FA & Transition	
3	Nondeterministic Finite Automata	Rabin M O & Scott D [1959]
	Variants	Finite Automata [5]. It is a quintuple.
	FA & Transition	It can be used to derive DFA using subset construction method.

Dr.P.Ezhilarasu, Prof.D.Satheesh Kumar, Associate Professor, Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore - 641032, India

Prof.J.Prakash, Assistant Professor, Department of Computer Science and Engineering, Hindusthan College of Engineering and Technology, Coimbatore - 641032, India. (Email: prof.p.ezhilarasu@gmail.com)

4	Single loop Nondeterministic Finite Automata Classification NFA & loop	Ezhilarasu et. al. [2014] classified the NFA based on single loop into three categories [6]. Those are 1. Starts with a substring (loop placed at the final state), 2.Ends with a substring, (loop placed at the start state) and 3. Starts with a substring and ends with a substring (loop placed at the intermediate state).
5	Double loop Nondeterministic Finite Automata Classification NFA &Loop	Ezhilarasu et. al. [2014] classified the NFA based on dual loop into three categories [7]. Those are 1. Starts with a substring & contains a substring (loop placed at the intermediate and the final state), 2.Contains a substring & ends with a substring, (loop placed at the start and the intermediate state) and 3. Contains a substring (loop placed at the start and final state).
6	More than Double loop Nondeterministic Finite Automata Classification NFA &loop	Ezhilarasu et. al. [2014] classified the NFA based on More than dual loop into three categories [8]. Those are 1.NFA that contains 2 or more substring (loop placed at start, >= one intermediate, and end state), 2. NFA that starts with a substring and contains 2 or more Substring (loop placed at >= two intermediate, and end state), and 3. NFA that ends with a substring and contains 2 or more Substring (loop placed at start, and >= two intermediate start, and >= two intermediate states).
7	Single substring Nondeterministic Finite Automata Classification NFA & substring	Ezhilarasu et. al. [2015] classified the NFA based on single substring into three categories [9]. Those are 1. NFA that starts with a substring 2. NFA that contains a substring 3. NFA that ends with a substring.
8	Double substring Nondeterministic Finite Automata Classification NFA & substring	Ezhilarasu & Krishnaraj [2015] classified the NFA based on the double substring into three categories [10]. NFA can be classified into three categories. Those are 1. Starts with a substring and ends with a substring 2.Starts with a substring and contains a substring 3. Contains a substring and Ends with a substring.
9	More than Double substring Nondeterministic Finite	Ezhilarasu & Krishnaraj [2015] classified the NFA based on the

Volume 1: Issue 4: April 2015, pp 1-3. www.aetsjournal.com ISSN (Online): 2455-0523 -

	Classification NFA & substring	triple substring into four categories [11]. Those are 1. Starts with a substring then contain a substring
		and ends with a substring 2. Starts with a substring and contains two substrings 3. Contains two substring and Ends with a substring 4. Contains three substrings.
	Fuzzy State Automata	Reyneri L M [1997] introduced the
	Variants	Fuzzy State Automata [12]. It is a combination of Finite State
10	FA & Fuzzy concepts	Automata and the neuro-fuzzy systems. The plant controlled and the characteristic of neuro-fuzzy system modified by the Finite State Automata.
	Maximin automata	Santos E S [1968] introduced the
	Variants	Maximin automata [13]. It is similar
11	NFA & DFA	to probabilistic automata. But it includes special cases as both NFA
		and DFA.
	Kind of Fuzzy Finite	Cheng W & Mo Z W [2000]
	Automata	classified fuzzy finite automata into
12	C1 : C'	two categories [14]. Those are fuzzy finite automaton with the initial state
12	Classification	and no output and the vice-versa.
	FA & Fuzzy concepts	
	Fuzzy semi automata	Vasantha Kandaswamy W B [2003] defined the fuzzy semi automata as a triplet. It has group, finite set, and the subset [15].
13	Variants	
	FA & Fuzzy concepts	
	Stochastic automata	It uses the concept of the timed automata and Generalized Semi
14	Variants	Markov Process (GSMP)[16].
	Automata	
	Fuzzy ω automata	Krithivasan & sharda [2001]
15	Variants	explained the Fuzzy ω automata [17]. An accepting abstract device
	Fuzzy concepts	for Fuzzy - ω language.
	Probabilistic automata	It is a generalization of NFA. It
16	Variants	converts probability of the transition into stochastic matrix through the
	NFA	transition function [18].
	Lattice-valued automata	It is a combination of three
17	Variants	components. Those are Fuzzy mathematics, lattice-ordered monoid
	Fuzzy	and the automation[19].
	Cellular Automata	The Cellular Automata (CA) is a
18	Variants	discrete model. It has grid of cells. each cell represent one finite state(on
10	Automata	or off) [20].
19	Turing Machine	The turing machine is an enhanced
	Variants	abstract machine invented by Alan Turing. It can move in both direction [21].
	FA	
20	Linear bounded Automata	Partee B H et. Al. [1993] defined the linear bounded automata as the turing machine with the input
	Variants	
		turing machine with the input

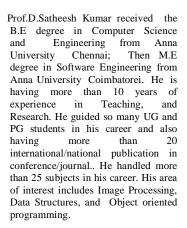
	FA	limitation [22]. The language accepted by the linear bounded
	Pushdown Automata	It is a combination of the Finite
21	Variants	Automata and the stack. The Finite Automata has the memory limit. To
	FA	overcome this stack used along with the FA. The Pushdown Automata has seven tuples. Five for representing the FA and the two for the stack [23].
	Nondeterministic fuzzy	Cao H & Ezawa Y [2012] combined
	Variants	the fuzzy concept with the NFA. It is the NFA with or without epsilon moves and can recognize fuzzy language [24].
22	NFA & Fuzzy concepts	
	Hybrid Extended Finite	Bordihn H et. Al. [2006] defined the
	Variants	Hybrid Extended Finite Automata as an extension of the finite automata.
23	FA	It uses the operation on the remaining current input, considering the current state. It uses reversal and shift operation [25].
	Structurally Unambiguous	Leung H [2006] defined the Structurally Unambiguous Finite Automata as a NFA that has the path from q_0 to q that consumes w. Where q_0 is a start state, q any state, and w represent the input string [26].
	Variants	
24	FA	
	Minimax Automata	Minimax algorithm is an evaluation function. It is used during draw or tie in a game. In two player game it evaluates both players best and weak moves [27].
25	Variants	
25	Automata	
	Composite Automata	It is a collection of cellular automata. The composition will be any one the following.1. spatial composition, 2.Temporal composition, and 3.combined spatial and temporal composition [28].
	Variants	
26	Cellular Automata	
	Max-Product Automata	This Automata has uncontrolled behavior. The degrees of membership of the states go to zero and remain zero [29].
27	Variants	
	Fuzzy Automata	
	Fixed Automata	Gajewski T [1991] defined the fixed automata as an automaton whose internal structure is not time varying
28	Variants	
	Time	called as fixed automata [30].

II. CONCLUSION

The classification and the variants of various automata studied. Normally these automata based on either Finite automata or fuzzy concepts. It shows that for designing any automata we should have basic knowledge in any one of the two topics. It is also possible to derive application based on various automata.

Volume 1: Issue 4: April 2015, pp 1-3. www.aetsjournal.com ISSN (Online): 2455-0523 -

REFERENCES


- [1] Available online at: http://www.yourdictionary.com/automata
- [2] Available online at https://www.cs.rochester.edu/~nelson/courses/csc_173/fa/fa.html
- https://en.wikipedia.org/wiki/Deterministic_finite_automaton
- [4] McCulloch, W. S.; Pitts, E. (1943). "A logical calculus of the ideas imminent in nervous activity". Bulletin of Mathematical Biophysics: 541–544.
- [5] M. O. Rabin and D. Scott, "Finite Automata and their Decision Problems", IBM Journal of Research and Development, 3:2 (1959) pp. 115–125.
- [6] Ezhilarasu P, Prakash J, Krishnaraj N, Satheesh Kumar D, Sudhakar K and Dhiyanesh B, "A Novel Approach to Classify Nondeterministic Finite Automata Based on Single Loop and its Position" International Journal of Advanced Research Trends in Engineering and Technology (IJARTET), Volume 1, Issue 4, 2014, pp. 7-10.
- [7] Ezhilarasu P, Prakash J, Krishnaraj N, Satheesh Kumar D, Sudhakar K, Parthasarathy C, "A Novel Approach to Classify Nondeterministic Finite Automata Based on Dual Loop and its Position ",International Journal of Engineering Trends and Technology (IJETT), Volume-18 Number-3,2014, pp. 147-150.
- [8] Ezhilarasu P, Prakash J, Krishnaraj N, Satheesh Kumar D, Sudhakar K, Parthasarathy C, "A Novel Approach to Classify Nondeterministic Finite Automata Based on More than Two Loops and its Position" SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE), Volumel Issue10 - December 2014, pp. 46-49.
- [9] P.Ezhilarasu, E.Thirunavukkarasu, G.Karuppusami, N.Krishnaraj, "Single Substring Based Classification for Nondeterministic Finite Automata", International Journal on Applications in Information and Communication Engineering, Vol 1(10) pp. 29 - 31. 2015.
- [10] P.Ezhilarasu, N.Krishnaraj, "Double Substring Based Classification for Nondeterministic Finite Automata", International Conference on Recent Advances in Engineering, Science & Technology –ICON"15", 2015.
- [11] P.Ezhilarasu, N.Krishnaraj, "Triple Substring Based Classification for Nondeterministic Finite Automata", International Journal of Applied Engineering Research (IJAER), Vol.10(59), pp.177-182, 2015.
- [12] L.M. Reyneri, An Introduction to Fuzzy State Automata, in Proc. of IWANN 97, Int'l Workshop on Artificial Neural Networks, Lanzarote (E), June 1997, pp. 273-283.
- [13] Santos E S, Maximin Automata, Information and control, 13(4), 363-377, 1968.
- [14] Cheng W, Mo Z W, "A Kind of Classification of fuzzy finite automata", BUSEFAL, 84,51-55.
- [15] Vasantha Kandaswamy W B,"Smarandache Fuzzy Algebra", American Research Press, Rehoboth, 2003.
- [16] D'Argenio, Pedro R. and Katoen, Joost-Pieter (2005) A theory of stochastic systems part I: Stochastic automata. Information and Computation, 203 (1). pp. 1-38.
- [17] Krithivasan K, Sharda K, Fuzzy ω automata ", Information sciences, 138(1-4),257-281,2001.
- [18] Available online at: https://en.wikipedia.org/wiki/Probabilistic_automaton
- [19] Available online at: https://en.wikipedia.org/wiki/Cellular_automaton
- [20] Available online at: http://www.com-paper.com/?p=19957
- [21] Available online at: https://en.wikipedia.org/wiki/Turing_machine
- [22] Partee B H,Meulen A T,Wall R E,"Linear Bounded Automata, Context Sensitive Languages and Type 1 Grammars", Mathematical Methods in Linguistics Volume 30 of the series Studies in Linguistics and Philosophy pp 527-532,1993.
- [23] Available online at: https://en.wikipedia.org/wiki/Pushdown_automaton
- [24] Cao H, Ezawa Y,"Nondeterministic Fuzzy Automata", Information Sciences, Volume 191, Pages 86–97,2012.
- [25] Bordihn H, Holzer M, and Kutrib M, "hybrid extended finite automata", Implementation and Application of Automata Volume 4094 of the series Lecture Notes in Computer Science pp 34-45,2006.
- [26] Leung H,"Structurally Unambiguous Finite Automata", Implementation and Application of Automata, 11th International Conference, CIAA 2006, Taipei, Taiwan, August 21-23, 2006. Proceedings, pp 198-207 2006
- [27] Available online at: https://chessprogramming.wikispaces.com/Minimax
- [28] Available online at: http://cell-auto.com/composite/

- [29] Available online at http://staff.cs.upt.ro/~todinca/VHDL_framework.pdf
- [30] Gajewski T, Algebraic and Structural Automata Theory, Annals of discrete mathematics 44. Mikolajczak B(Editor), 1991.

BIOGRAPHY

Dr.P.Ezhilarasu received the B.E degree in Computer Science and Engineering from Bharathiar University Coimbatore; Then M.E degree in Computer Science and Engineering from Anna University Chennai. He commended his Ph.D in Faculty of Information and Communication from Anna University Chennai .He is having more than 30 years of parallel experience in Teaching, Research and Industry. He guided so many UG and PG students in his career. He handled more than 30 subjects in his career and also having more than 50 international/national publication in conference/journal. His area of interest includes Image Processing, Theory of Computation, Data mining, soft computing.

Prof.J.Prakash received the B.E degree in Computer Science and Engineering from Anna University Chennai; Then M.E degree in Computer Science and Engineering from Anna University Coimbatore. He is having more than 7 years of experience in Teaching, Research. He guided so many UG and PG students in his career and also having more than international/national publication in conference/journal.. He handled more than 15 subjects in his career. His area of interest includes Theory of computation, Compiler design, and Internet programming.